由于肿瘤的异质性,在个性化的基础上预测抗癌药物的临床结局在癌症治疗中具有挑战性。已经采取了传统的计算努力来建模药物反应对通过其分子概况描绘的单个样品的影响,但由于OMICS数据的高维度而发生过度拟合,因此阻碍了临床应用的模型。最近的研究表明,深度学习是通过学习药物和样品之间的学习对准模式来建立药物反应模型的一种有前途的方法。但是,现有研究采用了简单的特征融合策略,仅考虑了整个药物特征,同时忽略了在对齐药物和基因时可能起着至关重要的作用的亚基信息。特此在本文中,我们提出了TCR(基于变压器的癌症药物反应网络),以预测抗癌药物反应。通过利用注意机制,TCR能够在我们的研究中有效地学习药物原子/子结构和分子特征之间的相互作用。此外,设计了双重损耗函数和交叉抽样策略,以提高TCR的预测能力。我们表明,TCR在所有评估矩阵上(一些具有显着改进)的各种数据分裂策略下优于所有其他方法。广泛的实验表明,TCR在独立的体外实验和体内实际患者数据上显示出显着提高的概括能力。我们的研究强调了TCR的预测能力及其对癌症药物再利用和精度肿瘤治疗的潜在价值。
translated by 谷歌翻译
作为“进化计算研究中的新领域”,进化转移优化(ETO)将克服传统的零重复利用相关经验和知识的范式,这些范式在进化计算研究中解决了过去的问题。在通过ETO的计划申请中,可以为智能调度和绿色日程安排形成一个非常吸引人且高度竞争的框架“会议”,尤其是对于来自中国的“碳中立性”的誓言。据我们所知,当多目标优化问题“满足”离散案例中的单目标优化问题(而不是多任务优化)时,我们在此处安排的论文是一类ETO框架的第一项工作。更具体地说,可以通过新的核心转移机制和学习技巧来使用用于置换流程调度问题(PFSP)的新核心转移机制和学习技术,可以使用用于工业应用传达的关键知识,例如具有遗传算法的位置构建块。关于良好研究基准的广泛研究验证了我们提出的ETO-PFSP框架的企业有效性和巨大的普遍性。我们的调查(1)丰富了ETO框架,(2)有助于遗传算法和模因算法的基本基础的经典和基本理论,(3)(3)朝着通过范例和范式进行学习的范式进行进化调整的范式转移,中国“工业情报”的“基于知识和建筑块的计划”(KAB2S)。
translated by 谷歌翻译
实时点云处理是大量计算机视觉任务的基础,而资源限制边缘设备上的计算问题仍然挑战。为了解决这个问题,我们实现了基于Xnor-Net的二进制神经网络(BNN),以实现有效的点云处理,但由于两个主要缺点,高斯分布的权重和非学习规模因子,其性能严重遭受。在本文中,我们将基于期望最大化(POEM)引入BNN的Pock-Wise操作,以实现有效点云处理。EM算法可以有效地限制强大的双模态分布的权重。我们领导了精心设计的重建损失,以计算可学习的尺度因素,以提高1位全连接(Bi-Fc)层的表示能力。广泛的实验表明,我们的诗超越了现有的现有二进制云网络,其显着的边距高达6.7%。
translated by 谷歌翻译
从单个图像的面部图像动画取得了显着的进展。然而,当只有稀疏的地标作为驱动信号时,它仍然具有挑战性。鉴于源人面部图像和一系列稀疏面部地标,我们的目标是生成模仿地标运动的脸部的视频。我们开发了一种高效有效的方法,用于从稀疏地标到面部图像的运动转移。然后,我们将全局和局部运动估计结合在统一的模型中以忠实地传输运动。该模型可以学习从背景中分割移动前景并不仅产生全局运动,例如面部的旋转和翻译,还可以微妙地进行诸如凝视变化的局部运动。我们进一步改善了视频的面部地标检测。随着时间上更好地对齐的训练的标志性序列,我们的方法可以产生具有更高视觉质量的时间相干视频。实验表明,我们实现了与最先进的图像驱动方法相当的结果,在相同的身份测试和交叉标识测试上的更好结果。
translated by 谷歌翻译
Long document retrieval aims to fetch query-relevant documents from a large-scale collection, where knowledge distillation has become de facto to improve a retriever by mimicking a heterogeneous yet powerful cross-encoder. However, in contrast to passages or sentences, retrieval on long documents suffers from the scope hypothesis that a long document may cover multiple topics. This maximizes their structure heterogeneity and poses a granular-mismatch issue, leading to an inferior distillation efficacy. In this work, we propose a new learning framework, fine-grained distillation (FGD), for long-document retrievers. While preserving the conventional dense retrieval paradigm, it first produces global-consistent representations crossing different fine granularity and then applies multi-granular aligned distillation merely during training. In experiments, we evaluate our framework on two long-document retrieval benchmarks, which show state-of-the-art performance.
translated by 谷歌翻译
An enhanced geothermal system is essential to provide sustainable and long-term geothermal energy supplies and reduce carbon emissions. Optimal well-control scheme for effective heat extraction and improved heat sweep efficiency plays a significant role in geothermal development. However, the optimization performance of most existing optimization algorithms deteriorates as dimension increases. To solve this issue, a novel surrogate-assisted level-based learning evolutionary search algorithm (SLLES) is proposed for heat extraction optimization of enhanced geothermal system. SLLES consists of classifier-assisted level-based learning pre-screen part and local evolutionary search part. The cooperation of the two parts has realized the balance between the exploration and exploitation during the optimization process. After iteratively sampling from the design space, the robustness and effectiveness of the algorithm are proven to be improved significantly. To the best of our knowledge, the proposed algorithm holds state-of-the-art simulation-involved optimization framework. Comparative experiments have been conducted on benchmark functions, a two-dimensional fractured reservoir and a three-dimensional enhanced geothermal system. The proposed algorithm outperforms other five state-of-the-art surrogate-assisted algorithms on all selected benchmark functions. The results on the two heat extraction cases also demonstrate that SLLES can achieve superior optimization performance compared with traditional evolutionary algorithm and other surrogate-assisted algorithms. This work lays a solid basis for efficient geothermal extraction of enhanced geothermal system and sheds light on the model management strategies of data-driven optimization in the areas of energy exploitation.
translated by 谷歌翻译
Facial Expression Recognition (FER) in the wild is an extremely challenging task. Recently, some Vision Transformers (ViT) have been explored for FER, but most of them perform inferiorly compared to Convolutional Neural Networks (CNN). This is mainly because the new proposed modules are difficult to converge well from scratch due to lacking inductive bias and easy to focus on the occlusion and noisy areas. TransFER, a representative transformer-based method for FER, alleviates this with multi-branch attention dropping but brings excessive computations. On the contrary, we present two attentive pooling (AP) modules to pool noisy features directly. The AP modules include Attentive Patch Pooling (APP) and Attentive Token Pooling (ATP). They aim to guide the model to emphasize the most discriminative features while reducing the impacts of less relevant features. The proposed APP is employed to select the most informative patches on CNN features, and ATP discards unimportant tokens in ViT. Being simple to implement and without learnable parameters, the APP and ATP intuitively reduce the computational cost while boosting the performance by ONLY pursuing the most discriminative features. Qualitative results demonstrate the motivations and effectiveness of our attentive poolings. Besides, quantitative results on six in-the-wild datasets outperform other state-of-the-art methods.
translated by 谷歌翻译
Monocular depth estimation has been actively studied in fields such as robot vision, autonomous driving, and 3D scene understanding. Given a sequence of color images, unsupervised learning methods based on the framework of Structure-From-Motion (SfM) simultaneously predict depth and camera relative pose. However, dynamically moving objects in the scene violate the static world assumption, resulting in inaccurate depths of dynamic objects. In this work, we propose a new method to address such dynamic object movements through monocular 3D object detection. Specifically, we first detect 3D objects in the images and build the per-pixel correspondence of the dynamic pixels with the detected object pose while leaving the static pixels corresponding to the rigid background to be modeled with camera motion. In this way, the depth of every pixel can be learned via a meaningful geometry model. Besides, objects are detected as cuboids with absolute scale, which is used to eliminate the scale ambiguity problem inherent in monocular vision. Experiments on the KITTI depth dataset show that our method achieves State-of-The-Art performance for depth estimation. Furthermore, joint training of depth, camera motion and object pose also improves monocular 3D object detection performance. To the best of our knowledge, this is the first work that allows a monocular 3D object detection network to be fine-tuned in a self-supervised manner.
translated by 谷歌翻译
With the success of the prompt-tuning paradigm in Natural Language Processing (NLP), various prompt templates have been proposed to further stimulate specific knowledge for serving downstream tasks, e.g., machine translation, text generation, relation extraction, and so on. Existing prompt templates are mainly shared among all training samples with the information of task description. However, training samples are quite diverse. The sharing task description is unable to stimulate the unique task-related information in each training sample, especially for tasks with the finite-label space. To exploit the unique task-related information, we imitate the human decision process which aims to find the contrastive attributes between the objective factual and their potential counterfactuals. Thus, we propose the \textbf{C}ounterfactual \textbf{C}ontrastive \textbf{Prompt}-Tuning (CCPrompt) approach for many-class classification, e.g., relation classification, topic classification, and entity typing. Compared with simple classification tasks, these tasks have more complex finite-label spaces and are more rigorous for prompts. First of all, we prune the finite label space to construct fact-counterfactual pairs. Then, we exploit the contrastive attributes by projecting training instances onto every fact-counterfactual pair. We further set up global prototypes corresponding with all contrastive attributes for selecting valid contrastive attributes as additional tokens in the prompt template. Finally, a simple Siamese representation learning is employed to enhance the robustness of the model. We conduct experiments on relation classification, topic classification, and entity typing tasks in both fully supervised setting and few-shot setting. The results indicate that our model outperforms former baselines.
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译